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Abstract

This paper is mainly devoted to a precise analysis of what kind of penalties
should be used in order to perform model selection via the minimization of a
penalized least-squares type criterion within some general Gaussian framework.
As compared to our previous paper on this topic (Birgé and Massart, 2001),
more elaborate forms of the penalties are given which are shown to be, in some
sense, optimal. We also provide risk bounds with explicit absolute constants and
an asymptotic evaluation of the risk which generalizes the one of Shibata (1981)
to our new penalties. Some applications to the estimation of change points for
a signal in Gaussian noise are also developed. We finally present a practical
strategy, based on sharp lower bounds for the penalty function, to design the
penalty from the data when the amount of noise is unknown.

1 Introduction

1.1 Variable selection for Gaussian regression

Let us consider the following classical regression problem: we observe n independent
observations Y1, . . . , Yn from the Gaussian linear regression set up

Yi =
p
∑

j=1

βjX
j
i + σξi for 1 ≤ i ≤ n, with ξ1, . . . , ξn i.i.d. N (0, 1), (1.1)

where Xj
i , 1 ≤ i ≤ n denote the respective values of some explanatory variable Xj .

We want to estimate the mean vector s = (si)1≤i≤n ∈ R
n of Y where si =

∑p
j=1 βjX

j
i ,

0AMS 1991 subject classifications. Primary 62G05; secondary 62G07, 62J05.
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assuming that σ is known. For any estimator ŝ with values in R
n, the normalized risk

of ŝ is given by E
[‖s − ŝ‖2

n

]

where ‖ · ‖n denotes the normalized Euclidean norm on
R

n given by ‖t‖2
n = n−1∑n

i=1 t2i . Typically, one uses the least squares estimator ŝΛ

which is the orthogonal projection of the vector Y = (Yi)1≤i≤n onto the linear space
generated by the p variables Xj , with j ∈ Λ = {1; 2; . . . ; p} (considered as vectors
Xj = (Xj

i )1≤i≤n ∈ R
n).

Let us now consider what would happen if, instead of this classical method, we
used a “wrong” or “approximate” model for Y and, although we do assume (1.1) did
as if Y were actually given by

Yi =
∑

j∈m

βjX
j
i + σξi for 1 ≤ i ≤ n, (1.2)

where m denotes some subset of Λ. In this case the natural estimator becomes the
least squares estimator ŝm based on this new model, i.e. the orthogonal projection of
Y onto the linear span Sm of the set of variables {Xj}j∈m. Its risk is given by

E

[

‖ŝm − s‖2
n

]

= ‖sm − s‖2
n + σ2|m|/n, (1.3)

where sm denotes the projection of s onto Sm. In particular, the risk of ŝΛ is σ2p/n. If
p is large because one has put all potentially influential variables into the model, this
risk may not be negligeable, even for large values of n. On the other hand, a choice
of a too parsimonious model including only a limited number |m| of variables can
result in a poor estimator based on a grossly wrong model if we have omitted some
very influential variables resulting in a large value of ‖sm − s‖n. Actually, from the
point of view of minimizing the risk, the best set of explanatory variables {Xj}j∈m

is the one which minimizes (1.3) and it is not necessarily the whole initial set (think
of the case where some of the βjs are close to zero). Finding an optimal, or close to
optimal, set m amounts, roughly speaking, to select, among a possibly large number
of explanatory variables, a smaller number of them containing all influential variables.

When introducing ŝm we did as if the model corresponding to (1.2) were correct, i.e.
if s did belong to the linear space Sm , which may or may not be true. Therefore, such
a problem of variable selection can be interpreted as a problem of “model selection”:
we want to choose a good model, i.e. one leading to a least squares estimator with a
close to minimal risk value, among all models of the form Sm. In view of (1.3), solving
this problem would be possible if we knew s hence its projection onto the linear spaces
Sm, which is obviously not the case. We are therefore led to the problem of choosing
m from what is available, namely the observations Yi.

1.2 Gaussian linear processes

Another interesting problem of the same type is the following. One observes a signal
in Gaussian noise at some times x1 = 0 < x2 < . . . < xn < 1. The signal is supposed
to be constant for a while and then jumps to another value, but neither the places,
nor the number of jumps are known. One wants, nevertheless, to estimate this signal.
This results in the following fixed design regression set up:

Yi =
p
∑

j=1

βj1lIj
(xi) + σξi for 1 ≤ i ≤ n, with ξ1, . . . , ξn i.i.d. N (0, 1), (1.4)
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where {Ij}1≤j≤p denotes some partition of [0, 1] into successive intervals. Once again,
our aim is to estimate the vector (si)1≤i≤n ∈ R

n where si = s(xi) and the function s is
given by s(x) =

∑p
j=1 βj1lIj

(x). If we define the risk of an estimator ŝ by E
[‖s − ŝ‖2

n

]

with ‖t‖2
n = n−1∑n

i=1 t2(xi), the problem is equivalent to the preceding one, given
by (1.1) if we set Xj

i = 1lIj
(xi). In this case a model corresponds to a partition

I = {Ij} and can be identified to the corresponding linear space SI generated by the
vectors (1lIj

(xi))1≤i≤n, for Ij ∈ I. The difference with the preceding example is that
choosing a partition does not mean selecting a subset from a set of variables, but
one has, nevertheless, to solve the same problem: choose a good model, i.e. a good
partition I leading to a least squares estimator ŝI with a risk close to minimal, from
the observations only.

Actually, both problems can be put into the framework of Gaussian Linear pro-
cesses, as defined in Birgé and Massart (2001, Section 2). Let us briefly recall what
we mean by that. Our regression set up (1.1) can be written in the form

Y = s + σξ with Y, s, ξ ∈ R
n, ξ ∼ N (0, Idn) and si =

p
∑

j=1

βjX
j
i . (1.5)

It follows that Y can be identified by duality with a linear operator on the Hilbert
space R

n, or equivalently to the Gaussian Linear process Y (·) indexed by R
n and

defined by

Y (t) = 〈Y, t〉n = 〈s, t〉n + σ〈ξ, t〉n = 〈s, t〉n + εZ(t), with ε = σ/
√

n, (1.6)

where 〈·, ·〉n denotes the scalar product corresponding to the norm ‖ · ‖n and Z is a
centered and linear Gaussian process indexed by R

n with covariance structure given
by E[Z(t)Z(u)] = 〈t, u〉n.

More generally, given some Hilbert space H with scalar product 〈·, ·〉 together with
some suitable linear subspace S ⊂ H , a Gaussian Linear process Y indexed by S is
defined by

Y (t) = 〈s, t〉 + εZ(t) for all t ∈ S, (1.7)

where Z denotes a linear isonormal process indexed by S, i.e. a centered and linear
Gaussian process with covariance structure E[Z(t)Z(u)] = 〈t, u〉. The fact that we
have to introduce the subspace S is due to the fact that one cannot warrant the
existence of a linear isonormal process on an arbitrary infinite dimensional Hilbert
space. It follows from the considerations developed in Section 2.1 of Birgé and Massart
(2001) that this framework is not only a good representation of the classical Gaussian
regression set up as we have already seen but also of the white noise framework.
Indeed, given the stochastic differential equation on X = [0, 1],

dX = s(x)dx + εdW with X(0) = 0, (1.8)

where W denotes a Brownian motion originating from zero and s ∈ L2([0, 1]), one
can define Y and Z satisfying (1.7) by

Y (t) =

∫ 1

0
t(x)dX(x) and Z(t) =

∫ 1

0
t(x)dW (x),

provided that S is a suitable linear subspace of L2([0, 1]).
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1.3 Projection estimators and model selection

Since the problems of estimating s =
∑p

j=1 βjX
j within the statistical framework

given by (1.1), or s =
∑p

j=1 βj1lIj
from (1.4), or the function s in (1.8), when the

values of σ and ε are known, can all be reduced to the one of estimating s from (1.7)
when ε is known, let us now concentrate on the latter problem. We recall that the
risk of an estimator ŝ = ŝ(Y ) is given by E

[‖ŝ − s‖2
]

, where ‖ · ‖ denotes the norm
in H . It is important here to notice that the restriction of this process Y to some
finite dimensional linear space S of dimension D can always be written as

Y (t) = 〈s, t〉 + ε〈ξ, t〉 for all t ∈ S, with ξ ∼ N (0, IdD).

Indeed, given some orthonormal basis ϕ1, . . . , ϕD of S, ξ can be written as the D-
dimensional Gaussian vector with independent coordinates ξj = Z(ϕj). In this case,
the knowledge of the restriction to S of the process Y is equivalent to the knowledge
of the Gaussian vector YS = sS +εξ ∼ N (sS , εIdD), where sS denotes the projection
of s onto S. If only YS is available, the best we can do is to estimate sS, which is
the mean of a Gaussian vector. Therefore a natural estimator ŝS is the maximum
likelihood estimator which is also the least squares estimator, i.e. the minimizer, with
respect to t ∈ S of ‖YS − t‖2. Equivalently, ŝS can be defined as the minimizer, with
respect to t ∈ S of ‖t‖2 − 2Y (t).

¿From now on, we shall call any finite-dimensional subspace of S, like S, a model
and ŝS the projection estimator of s with respect to the model S. It is well-known
that the risk of ŝS is given by

E

[

‖ŝS − s‖2
]

= ‖sS − s‖2 + ε2D,

which is the sum of an approximation error (bias) due to the replacement of s by sS

and an estimation error (variance term) proportional to the dimension of the model
we use, which is the number of parameters to be estimated. In particular, if we
know in advance that s belongs to some given linear space S̄, with dimension D̄, we
get E

[‖ŝS̄ − s‖2
]

= ε2D̄, but this does not at all mean that ŝS̄ is a good estimator,
as shown by the following example. Assume, for instance, that s can be written as
∑D̄

j=1 θjϕj , where ϕ1, . . . , ϕD̄ is an orthonormal basis of S̄ and m = {j | |θj | ≥ ε} has
a cardinality D′ smaller than D̄. Introducing the approximate model S′, which is the
linear span of {ϕj | j ∈ m}, we get

E

[

‖ŝS′ − s‖2
]

=
∑

j /∈m

θ2
j + ε2D′ < ε2D.

It may even happen that the risk of ŝS′ is much smaller than the risk of ŝS̄. Since, in
many situations, we do not even know any finite dimensional space containing s, the
problem is even more delicate.

¿From a more concrete point of view, when we want to estimate s from (1.7),
we have at hand, or we introduce, a suitable family of models {Sm,m ∈ M} and
the corresponding family of projection estimators {ŝm,m ∈ M}, with respective
quadratic risks

Rm = E

[

‖ŝm − s‖2
]

= ‖sm − s‖2 + ε2Dm, (1.9)
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where Dm denotes the dimension of Sm and sm the orthogonal projection of s onto
Sm. Since the computation of the estimators ŝm only involves the random variables
Y (t) with t ∈ ∪m∈MSm, one can always assume that S is the linear span of ∪m∈MSm.
We do not assume here that s belongs to any of the models, but even when this is the
case, the preceding example of S̄ and S′ shows that the use of approximate models
is perfectly justified.

Selecting a model leading to a minimal risk amounts to minimize Rm, which is
practically impossible since, by (1.9), it depends on the unknown s. Nevertheless,
one would like to build an estimator s̃, such that

E

[

‖s̃ − s‖2
]

≤ C inf
m∈M

{

E

[

‖ŝm − s‖2
]}

, (1.10)

at least for a large class of functions s. Moreover, it would be desirable that C be as
close to one as possible. Note, as explained in Birgé and Massart (2001, Section 2.3.3),
that it is generally impossible to get it whatever s.

1.4 Penalized projection estimators

In view of the definition of ŝm as the minimizer, with respect to t ∈ Sm of γ(t) =
‖t‖2 − 2Y (t), one could think of choosing some model m by minimizing γ(ŝm) with
respect to m ∈ M, but this is obviously a bad idea if one aims at minimizing the
risk, since if Sm ⊂ Sm′ (and Sm 6= Sm′), then γ(ŝm′) > γ(ŝm) a.s. This implies
that, if we consider an increasing sequence of models Sm1

⊂ . . . ⊂ Smp , the criterion
will systematically choose the larger model which may be of very large dimension,
and this is definitely not satisfactory in view of (1.9). One simple way out of this is
to compensate the phenomenon by adding to γ a penalty depending on the model
we use and which is, roughly speaking, increasing with the model dimension. This
leads to choosing s̃ as the minimizer for all m and t ∈ Sm of the penalized criterion
γ(t) + pen(m). Alternatively,

s̃ = ŝm̂ with m̂ = argmin
m∈M

{γ(ŝm) + pen(m)}. (1.11)

The method is not new at all and penalized maximum likelihood (which, in our
presentation, means to choose γ(t) = −log-likelihood of t) has been used for decades.
The first examples we know about of such criteria are due to Mallows (1973) and
Akaike (1969 for FPE, 1973 and 1974 for AIC). Mallows’ Cp, which, according to
Daniel and Wood (1971) dates back to the early sixties, was designed to solve our
initial problem of variable selection: estimating s in (1.5) when the variance of the
errors is known (or independently estimated), while Akaike’s AIC, which has a more
general scope would be used when this variance is unknown. Translated into the
framework given by (1.7), Mallows’ Cp corresponds to setting pen(m) = 2ε2Dm in
(1.11) with the same choice of γ. Akaike’s AIC criterion corresponds to γ(ŝm) being
minus the maximum likelihood on the model Sm and, in our case of a known ε, is
identical to Mallows’ Cp. Both criteria are based on some unbiased estimation of
the quadratic risk and aim at choosing a model which minimizes this risk: this is
the efficiency point of view. Mallows’ Cp has been proved by Shibata (1981) to be
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asymptotically (when ε goes to zero) efficient at the price of assuming that the true
s does not belong to any model in the list.

Another point of view about model selection consists in assuming the existence of a
true model of minimal size and to aim at finding it. In our framework, this means that
s belongs to some model Sm in the family with minimal dimension and one wants to
find it. The following criteria have been designed to find it with probability tending to
one when ε goes to zero (and the list of models remains fixed): BIC (Akaike, 1978 or
equivalently Schwarz 1978)) and Hannan-Quinn (1979): this is the consistency point
of view. For a recent analysis of such criteria, see Guyon and Yao (1999).

The distinction between these points of views and the related criteria (with many
more explanations and historical references) has been discussed very carefully and
nicely in the first chapter of McQuarrie and Tsai (1998) to which we refer the inter-
ested reader since a more detailed discussion of the various criteria would only be a
weak copy of theirs. In any case, although both points of view have their advantages,
they suffer from the same drawback, which is their definitely asymptotic nature. One
attempt to solve this problem has been the introduction of a modified version of AIC,
namely AICc, by Hurvich and Tsai (1989), which definitely improves on AIC for small
sample sizes.

In this paper, we focus on the first point of view: efficiency, but from a nonasymp-
totic perspective. A first reason for such a choice is that we neither want to assume
that the true s does belong to one of the models (which is required for the consistency
approach), nor exclude this case as requested for the asymptotic efficiency of Mallows’
Cp and related criteria. Another reason is that we want to allow the list of models to
depend on ε, since it is of common practical use to introduce more explanatory vari-
ables when one has more observations while one would choose parsimonious models,
which are likely to be only approximately true, when one has at hand a limited num-
ber of data. In any case, the number and choice of the models depends heavily on the
number of observations. A major consequence of our approach is the emergence of
richer penalty structures than those involved in the classical criteria mentioned above,
which are directly connected with the complexity of the family of models at hand. In
this sense, the results which are presented below provide a link between those clas-
sical criteria and the general methodology of minimum description length (Rissanen,
1978) or minimum complexity (Barron and Cover, 1991) for discrete models.

In the next section we derive sufficient conditions on the penalty functions leading
to nonasymptotic risk bounds for penalized estimators. When the number of models
is not too large, we show that these bounds imply that (1.10) holds and allow to
recover the asymptotic efficiency of Mallows’ Cp. We then apply those results to the
detection of change points on the mean of a Gaussian signal in Section 3. Section 4
is devoted to negative results showing that the restriction that we imposed on the
penalties in our main theorem in Section 2 are actually sharp. Section 5 presents
some heuristics for a data-driven choice of the penalty. The remainder of the paper
is devoted to the proofs.
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2 How should one choose a proper penalty function?

2.1 Introducing general penalties

In the framework of Gaussian Linear processes that we consider here, a first attempt
to define general penalties, in view of designing estimates s̃ that achieve (1.10) in a
nonasymptotic context and for arbitrary families of models has been given in Birgé
and Massart (2001). There, we introduced suitable penalties which, according to
the “richness” of the family of models at hand, look like either Mallows’Cp or BIC,
or some mixtures of them, or have even more complicated structures. Let us now
summarize the corresponding results.

Here and in the sequel, we shall stick to the following framework: we observe the
process Y (t) given by (1.7) where Z is a linear isonormal process on S and s an
unknown function in H to be estimated. We consider a countable (possibly finite)
collection {Sm,m ∈ M} of finite dimensional linear subspaces of S and denote by Dm

the dimension of Sm, by sm the orthogonal projection of s onto Sm and by ŝm the
projection estimator of s on Sm, which is the the minimizer, with respect to t ∈ Sm,
of γ(t) = ‖t‖2 − 2Y (t).

Typically, the family {Sm,m ∈ M} is given and one chooses S to be the linear
span of ∪m∈MSm. In such a case, there exists a version of Z which is linear on S

(Birgé and Massart, 2001, Section 2.3.1). We do not assume that the correspondance
m 7→ Sm is one-to-one since this may be more convenient in some cases as explained
in Birgé and Massart (2001, Section 3.1) and allow 0-dimensional models (Sm = {0}).

To each model Sm with positive dimension, we associate some nonnegative weight
Lm and assume that the family of weights satisfies the condition

Σ =
∑

{m∈M |Dm>0}

exp[−DmLm] < +∞, (2.1)

which is always possible since M is countable. Finally given some nonnegative penalty
function pen(·) defined on M, we consider the penalized projection estimator s̃ = ŝm̂

defined by (1.11). Since γ(ŝm) = −‖ŝm‖2, m̂ can alternatively by defined as

m̂ = argmin
m∈M

{

pen(m) − ‖ŝm‖2
}

. (2.2)

Suitable definitions of the penalty function imply that m̂ is well-defined and unique
almost surely as shown by the following result from Birgé and Massart (2001).

Theorem 1 Given a family of weights {Lm}m∈M satisfying (2.1) and a penalty func-
tion pen(·) such that

pen(m) ≥ Kε2Dm

(

1 +
√

2Lm

)2
for all m ∈ M and some K > 1, (2.3)

the penalized projection estimator s̃ = ŝm̂ defined by (1.11) almost surely exists and
is unique. Moreover it satisfies

E

[

‖s̃ − s‖2
]

≤ C1(K)

[

inf
m∈M

{

d2(s, Sm) + pen(m)
}

]

+ C2(K)ε2Σ, (2.4)

where d(s, Sm) denotes the distance from s to the space Sm and C1, C2 depend on K
only.

7



As a consequence, if one can find a bounded family of weights (supm Lm = L < +∞)
satisfying (2.1) (which is possible when the number of spaces Sm having the same
dimension Dm = D is not too large) and if equality holds in (2.9), one derives from
(1.9) and (2.4) that

E

[

‖s̃ − s‖2
]

≤ C3(K,L)

[

inf
m∈M

{

E

[

‖ŝm − s‖2
]}

+ ε2Σ

]

, (2.5)

This means that, if no estimator in the family is close to perfect for estimating s, i.e.
if

inf
m∈M

E

[

‖ŝm − s‖2
]

≥ ε2,

the penalized estimator s̃ satisfies (1.10) with C = C3(1 + Σ) and therefore behaves
as well as the best projection estimator in the family, up to the constant C. Such
a result immediately leads to various questions and in particular “how should one
choose the penalty in order to minimize C?”; “is it possible to get C close to one?”,
and so on . . .

The purpose of the present paper is twofold. First, to give (partial) answers to
these questions via an improved version of Theorem 1 which will prove to be quite
useful for a practical implementation of penalization methods (to be developed in
subsequent papers). In particular, we shall derive a form of penalty which is slightly
different from (2.3) and which will be shown to be close to optimal. Our second
aim is to provide various lower bounds for the penalty term, in particular for the
problem of variable selection in Gaussian regression. Such lower bounds will, in
particular, allow us to explain when Mallows’ Cp does or does not work and what
alternative should be chosen when it does not work. Moreover, although those lower
bounds arguments may look quite abstract at first sight, they do have an important
practical consequence. From a practical point of view, ε is typically unknown and
has to be somehow estimated. The lower bounds arguments allow us to set up a
practical method for estimating the penalty function to be used when ε is unknown,
as explained in Section 5.

Since the many possible applications and consequences (in particular to adapta-
tion), of results similar to Theorem 1 have been developed at length in Birgé and
Massart (2001), we shall not come back to them here and content ourselves to deal
with the change point problem for fixed design regression given by (1.4).

2.2 New penalties and the corresponding risk bounds

Keeping in mind the set up and results of the previous section, we see that the
performance of penalized projection estimators, with a penalty function given by
(2.3), is clearly connected to the choice of the weights Lm. In view of (2.4), they
should be as small as possible but nevertheless satisfy (2.1) with a reasonably small
constant Σ, of the order of one (say). When going to practical examples (many
of them can be found in Birgé and Massart, 2001), one typically encounters three
different situations:

1. for each D ≥ 1 the number of indices m such that Dm = D is not large (bounded
by a polynomial function of D, say) and one can therefore choose Lm as a small
constant or even a function of Dm which goes to zero when Dm goes to infinity;
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2. the number of indices m such that Dm = D is moderate, leading to a choice
Lm = L for some constant L of moderate size;

3. the number of indices m such that Dm = D is much larger, typically of or-

der

(

N
D

)

where N is a large parameter and one has to choose Lm of order

log(N/D).

Such situations lead to very different types of results. As we shall see below, the most
favourable case is the first one, since then, one can prove a result of the form (2.5) with
C close to one asymptotically (when ε goes to zero). On the other hand, as is already
visible from Theorem 1, in the third case, there is typically no hope, in general, to get
(2.5) with a C smaller than log N , the second case being an intermediate situation.
In order to cover all standard situations, we shall give two different results. The first
one gives an all purposes nonasymptotic bound while the second is purely asymptotic
and specific to case 1.

Theorem 2 Given the family of models {Sm}m∈M, let us consider a family of non-
negative weights {Lm}m∈M satisfying (2.1), two numbers, θ ∈ (0, 1) and K > 2 − θ,
let us set

Qm = ε2Dm

(

K + 2(2 − θ)
√

Lm + 2θ−1Lm

)

for all m ∈ M (2.6)

and assume that there exists a finite (possibly empty) subset M̄ of M such that the
penalty function pen satisfies

pen(m) ≥ Qm, for m ∈ M \ M̄. (2.7)

Then the corresponding penalized projection estimator s̃ defined by (1.11) exists a.s.
and satisfies

(1 − θ) E

[

‖s − s̃‖2
]

≤ inf
m∈M

{

d2(s, Sm) + pen(m) − ε2Dm

}

+ sup
m∈M̄

{Qm − pen(m)}

+ ε2Σ
[

(2 − θ)2(K + θ − 2)−1 + 2θ−1
]

, (2.8)

where d(s, Sm) denotes the distance from s to the space Sm. If, in particular,

pen(m) = ε2Dm

(

2 + 3
√

Lm + 4Lm

)

whatever m ∈ M, (2.9)

then

E

[

‖s − s̃‖2
]

≤ 2 inf
m∈M

{

d2(s, Sm) + ε2Dm

[

1 + 3
√

Lm + 4Lm

]}

+ 17ε2Σ. (2.10)

Remark: It may look strange, at first sight, to introduce a nonempty set M̄ on which
(2.7) may be violated rather than assuming that it holds for all m. There are two
reasons for that. The first is to show that if (2.7) does not hold for some values of
m corresponding to spaces Sm of low dimension, then the consequence on the risk
may be quite limited. The second reason is that it will also be necessary to introduce
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it, in Section 4.1 below, in order to prove lower bounds on the penalty function and
show that (2.7) has to hold, at least when Dm is large, for the penalized estimator to
behave nicely.

If we assume that the upper bound (2.8) on the risk of s̃ is sharp (up to multiplicative
constants), we see that there is no hope to get (1.10) if the Lms are unbounded or
with a small value of C when they are large. On the other hand, if one can choose
a family of weights such that Lm is small when Dm becomes large, then the next
proposition, which is in the spirit of Shibata (1981), Li ( 1987), Polyak and Tsybakov
(1990) or Kneip (1994), is more suitable.

Proposition 1 Assume that it is possible to find a family of weights (Lm)m≥0 such
that

∑

m∈M

exp[−ηLmDm] < +∞ for all η > 0 (2.11)

and the fonction L(D) = sup{Lm,m ∈ M|Dm = D} is finite and satisfies

lim
D→+∞

L(D) = 0. (2.12)

Assume, moreover, that d(s, Sm) > 0 for all m ∈ M and that the penalty satisfies for
some a, b ≥ 0,

2ε2Dm ≤ pen(m) ≤ ε2Dm

(

2 + a
√

Lm + bLm

)

for all m ∈ M. (2.13)

Then the penalized projection estimator s̃ satisfies

lim
ε→0

E
[‖s − s̃‖2

]

E [infm∈M ‖s − ŝm‖2]
= 1.

The proofs of Theorem 2 and Proposition 1 being quite technical will be defered to
Section 6.2.

3 Application: change points in a Gaussian signal

3.1 Two change points problems

As was previously mentioned, many applications of Theorem 1 to variable selection
for the classical linear regression framework (1.1) and to the construction of minimax
and adaptive estimators over various function spaces have been given in Birgé and
Massart (2001, Sections 5 and 6). Although Theorem 2 and Proposition 1 improve on
Theorem 1, the corresponding modifications of the theoretical treatment of variable
selection are straightforward and need not be considered here. As to the practical
treatment, the main problem is to define suitable numerical values for the penalty
function in both cases of ordered and complete variable selection. Although the
theoretical results given in this paper provide a few hints and a starting point in this
direction, a much more precise analysis is needed, based on heavy simulation studies,
in order to define a practically good penalty function, which means one leading to an
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almost minimal value of the risk. Such studies, in the case of variable selection, will
be developed in subsequent papers.

Here we shall concentrate on the following problem: we observe a signal in Gaussian
white noise and the signal is constant for a while and then changes to another level.
Neither the level, nor the location and number of the change points are known. In
brief, the signal has the form

s =
p
∑

j=1

βj1lIj
with Ij = [aj−1, aj) and a0 = 0 < a1 < . . . < ap = 1 (3.1)

and we observe on [0, 1] the process X given by (1.8) or equivalently, as explained
in the introduction, the linear Gaussian process Y (t) = 〈s, t〉 + εZ(t) for t ∈ S ⊂
L2([0, 1]).

¿From a practical point of view, one often doesn’t observe X in continuous time,
but rather in discrete time, at times x1, . . . , xn, which means that our set of ob-
servations is the set Y1, . . . , Yn as defined by (1.4). In this case, we consider the
Hilbert space H of functions on the set X = {x1, . . . , xn} with scalar product
〈u, v〉 = n−1∑n

i=1 u(xi)v(xi), which is an n-dimensional linear space. Clearly, any
element t ∈ H can be identified to the vector with coordinates t(xi) in R

n. To put
it in the Gaussian Linear process form, starting from Yi = s(xi) + σξi, it suffices to
set, for any t ∈ H , Y (t) = 〈Y , t〉 where Y denotes the vector with coordinates Yi.
Then Y (t) = 〈s, t〉 + σ〈t, ξ〉 where ξ, with independent coordinates ξi, is a standard
Gaussian vector in R

n. Obviously, Z(t) =
√

n〈t, ξ〉 = n−1/2∑n
i=1 t(xi)ξi is a linear

isonormal process and Y (t) can be written in the form (1.7) with ε = σ/
√

n. Without
loss of generality, one can assume that the observation times xi are given in increasing
order with x1 = 0 and xn < 1. Setting xn+1 = 1, one can again represent the signal
s in the form (3.1) with the aj’s coinciding with some of the xi’s.

The problem of detecting the change points in a piecewise constant signal has
already been considered by Yao (1988) and more recently by Lavielle and Moulines
(2000) but their point of view was quite different since it was asymptotic and they
assumed a fixed number of change points. Their purpose was then to detect and
estimate consistently all those change points while our aim is to estimate the function
s with a small quadratic risk for a given value of ε or n. This is a situation where it
might be better to ignore some of the change points corresponding to small jumps of
s.

3.2 Estimation in continuous time

Let us define the subset J of N
2 by

J = {(1, 1)}
⋃

{(N,D), N ≥ 2, 2 ≤ D ≤ N}

and consider, for each (N,D) ∈ J , the set MN,D of all subsets m of cardinality D−1
of {1; . . . ;N − 1}, with m = ∅ when N = D = 1. We set i0 = 0, iD = N and given
m = {i1 < i2 < . . . < iD−1} ∈ MN,D, we define the D-dimensional linear space Sm

11



by

Sm =







D
∑

j=1

βj1lIj

∣

∣

∣

∣

∣

∣

β = (β1, . . . , βD)t ∈ R
D







with Ij = [ij−1/N, ij/N).

In particular, S∅ is the one-dimensional linear space generated by 1l[0,1). We finally
set M = ∪(N,D)∈JMN,D and Lm = 1 + log(N/D) + (3 log N)/D when m ∈ MN,D.
Since the cardinality of MN,D is given by

|MN,D| =

(

D − 1
N − 1

)

≤
(

D
N

)

≤
(

eN

D

)D

,

it follows that

∑

m∈M

exp(−LmDm) ≤ e−1 +
∑

N≥2

N
∑

D=2

(

eN

D

)D

exp[−D − D log(N/D) − 3 log N ]

= e−1 +
∑

N≥2

1

N2
=

π2

6
+ e−1 − 1.

An immediate application of Theorem 2 shows that, if s̃ denotes the penalized pro-
jection estimator with penalty function given by (2.9), then

E

[

‖s − s̃‖2
]

≤ C inf
(N,D)∈J

{(

inf
m∈MN,D

d2(s, Sm)

)

+ ε2D

[

1 + log
N

D

]

}

.

In particular, a signal of the form aε21l[(j−1)/N ;j/N) for some positive integer j ≤ N ,
with a large value of a will be estimated with a risk smaller than 3Cε2(1 + log N),
while a signal of the form

∑N
j=1 βj1l[(j−1)/N ;j/N) will be estimated with a risk smaller

than Cε2N .

3.3 Estimation in discrete time

In this case, given an ordered subset m = {i1 < i2 < . . . < iD−1} of {2; . . . ;n}
(with m = ∅ if D = 1) and setting i0 = 1, iD = n + 1, we consider the associated
D-dimensional linear subspace of H defined by

Sm =







D
∑

j=1

βj1lIj

∣

∣

∣

∣

∣

∣

β = (β1, . . . , βD)t ∈ R
D







with Ij = [xij−1
, xij ).

Defining by M the set of all possible distinct subsets m when D varies from 1 to n,
we use the family {Sm}m∈M to define a penalized projection estimator of s. It follows

that the number of models Sm such that Dm = D is

(

D − 1
n − 1

)

. Computations quite

similar to those of the previous section together with an application of Theorem 2
show that a penalized projection estimator s̃ associated to the models Sm, the weights
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Lm = L+log(n/Dm) with L > 1, for m ∈ M,m 6= ∅ and L∅ = L and penalty function
given by (2.9), satisfies a risk bound of the form

E

[

‖s − s̃‖2
]

≤ C

[

inf
m∈M\∅

{

d2(s, Sm) + ε2Dm

[

1 + log
n

Dm

]}

∧

(

d2(s, S∅) + ε2
)

]

. (3.2)

The presence of the log(n/Dm) factor in the risk when Dm ≥ 2 is indeed necessary,
from the minimax point of view. This could be proved by the same arguments we
used for Proposition 2 of Birgé and Massart (1998) or Theorem 5 of Birgé and Massart
(2001).

¿From the minimax point of view, Bound (3.2) is unimprovable without additional
information on s, apart from the value of the constant C, but it is actually possible
to improve on it from a different point of view. Let us, for instance, imagine that
the sequence (xi)1≤i≤n+1 is equispaced, i.e. xi = (i− 1)/n, and one suspects that the
change points in the representation of s are predictable since their succession follows
a simple rule. One can, for instance, imagine that we observe at the discrete times
xi, 1 ≤ i ≤ n a function s(x) which jumps at times separated by some interval b/n with
1 ≤ b. Since there is no reason why the observation period [0, (n−1)/n] be connected
with the jumps, the discretized change points are of the form xij = (ij − 1)/n with

ij = 1 + ⌈a + (j − 1)b⌉, 0 < a ≤ b and ⌈x⌉ = inf{k ∈ N |n ≥ x}. (3.3)

Then the set {xij}1≤j≤D−1 of observable change points is entirely described by the set
of integers m = {ij | 1 ≤ j ≤ D − 1} with i1 < i2 < . . . < iD−1 where xiD−1

denotes
the last observable change-point in [0, (n − 1)/n], which means that D is defined by

D = inf{j ∈ N | a + (j − 1)b > n − 1}.

Then 1 ≤ D ≤ n, D = 1 means that m = ∅ and the definition of D implies that

(D − 1)a ≤ n − 1 and for D ≥ 3,
n − 1 − a

D − 2
≥ b >

n − 1 − a

D − 1
.

It follows from these inequalities that, given D ≥ 3, the number of possible choices
for i1 is bounded by ⌈(n − 1)/(D − 1)⌉ ≤ 2n/D and the number of possibilities for
⌈b⌉ as well. Let M′ be the set of those m’s corresponding to these special sequences
(ij)1≤j≤D−1 given by (3.3). Since ij − ij−1 is either ⌈b⌉ or ⌈b⌉ − 1, it follows that, for
D ≥ 3,

|{m ∈ M′ |Dm = |m| + 1 = D}| ≤ (2n/D)22D−2 = 2D(n/D)2

and this bound remains true when D ≤ 2. This means that, for m ∈ M′, the value of
Lm can be reduced to (2 log n)/Dm + log 2. The resulting risk bound (derived from
Theorem 2) substancially improves on (3.2) when s belongs to some Sm such that m
is generated by (3.3) and Dm is larger than log n.
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4 Some potential difficulties connected with bad penalty
choices

It follows from Theorem 2 that a proper choice of the penalty should be of the form

pen(m) = ε2Dm

(

K + a
√

Lm + bLm

)

with K > 1, a > 2 and b > 2,

and the computations of Section 6.2 show that the limiting condition

pen(m) > ε2Dm

(

1 + 2
√

Lm + 2Lm

)

(4.1)

is required for our proof of Theorem 2 to work, which, of course, does not mean that
a smaller choice of the penalty should necessarily lead to a bad estimator. Similarily,
the choice of a large value of K leads to larger upper bounds for the risk, but this
does not mean that the risk itself is necessarily larger. In order to choose the penalty
in a satisfactory manner, it is therefore desirable to know whether the restrictions
which come out from our proofs, namely that (4.1) holds and K is not too large,
are indeed necessary or not. The following sections will be devoted to show that
those restrictions are actually perfectly justified, in the sense that, if those conditions
are violated, the penalized estimator can behave quite poorly for some values of
the unknown parameter s. Although the forthcoming results are not sufficient to
decide precisely what form of penalty is the most adequate in a specific situation and
may therefore look rather abstract at first sight, they are indeed very useful for the
practical implementation of penalized estimators since they do provide the necessary
guidelines for the preliminary choices of the numerical parameters involved in the
penalty and the setting of the extensive simulations that are required to optimize
those parameters in a given situation.

4.1 Lower bounds for the penalty term

4.1.1 Position of the problem

Our aim here in this section, is to show that the lower bound (4.1) on the penalty
term is, in some sense, necessary. It is actually not obvious to give a precise formal
meaning to this claim since this lower bound depends on the weights Lm which are not
uniquely defined. If, for instance, (2.1) holds with Lm = L for all m ∈ M whatever
L > 0, and we choose Lm = 5 for all m, it is clear, from Theorem 2, that a penalty
violating (4.1) for all m, such as pen(m) = 2ε2Dm, still leads to a good penalized
estimator. This emphasizes the fact that the problem of showing the necessity of
(4.1) is ill-posed without further restrictions on the values of the weights Lm.

In order to overcome this difficulty, we shall first restrict our attention to some
particular, although quite common, situation, where the number of models such that
Dm = D is finite for each integer D. The Lms are of course allowed to be very different
from one m to another, but since they are chosen by the statistician, a typical choice,
in this case, is Lm = L(Dm) for some positive function L. Many illustrations of this
fact have been given in Birgé and Massart (2001). Setting

H(D) = D−1 log |{m ∈ M|Dm = D}|, (4.2)
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(2.1) requires that
∑

D≥1

exp[−D[L(D) − H(D)]] < +∞.

Choosing L(D) = H(D) + δ with 0 < δ ≤ 1/2, θ = 1 − δ and K = 1 + 2δ, we get

Σ ≤
(

eδ − 1
)−1

and

Qm = ε2Dm

[

1 + 2δ + 2(1 + δ)
√

H(Dm) + δ + 2(1 − δ)−1[H(Dm) + δ]

]

≤
(

1 + 8
√

δ
)

ε2DmA(Dm),

where
A(D) = 1 + 2

√

H(D) + 2H(D). (4.3)

This implies, by Theorem 2, that any penalty of the form

pen(m) = (1 + η)ε2DmA(Dm), η > 0 for all m ∈ M such that Dm > D̄, (4.4)

satisfies (2.7) provided that δ is small enough and results in a risk bound of the form

E

[

‖s − s̃‖2
]

≤ C(η)

(

inf
m∈M

{

d2(s, Sm) + ε2[DmA(Dm) + 1]
}

+ ε2 sup
1≤D≤D̄

{DA(D)}
)

. (4.5)

Our purpose in the next three sections will be to prove that if (4.4) is violated, i.e.

pen(m) ≤ (1 − η)ε2DmA(Dm) (4.6)

for some η > 0 and Dm sufficiently large, then the risk E
[‖s − s̃‖2

]

can be arbitrarily
large, even if s = 0 or the estimator s̃ may even be undefined. The reason for focusing
on large values of Dm only is that (4.6) is compatible with (4.4) provided that Dm ≤ D̄
and that the term sup1≤D≤D̄{DA(D)} can be considered as an additional constant
if D̄ is not large. It is only by letting D̄ go to infinity that we can make the bound
(4.5) blow up.

The behaviour of A(D) when D is large actually depends on the size of H(D). If
H(D) is small, A(D) is close to one; if H(D) is large, then A(D) is equivalent to
2H(D) while, for moderate values of H(D) none of the three terms defining A(D)
can be ignored. This will lead us to distinguish between those three cases to prove the
bad behaviour of some penalized estimators when (4.6) holds for some m for which
Dm is large enough. We shall be able to exhibit this phenomenon whatever the family
of models whenever H(D) is small for large D and in the case of complete variable
selection to illustrate the case where H(D) can be arbitrarily large. The intermediate
situation of moderate values for H(D) is more delicate and requires a special and
somehow less natural construction of a family of models but with the advantage
that it shows that the structure of A(D) is the right one to define a lower bound
for the penalty. It is worth mentioning that each of those three cases corresponds
to various interesting examples. The case of H(D) tending to zero when D goes to
infinity corresponds to ordered variable selection for which there is only one model per
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dimension; the opposite case when H(D) can be arbitrarily large arises in complete
variable selection with a large number of variables, while the intermediate case occurs
for the parsimonious variable selection strategy connected with adaptive estimation in
Besov balls described in Birgé and Massart (2001, Section 6.4) or with the histogram
selection pruning procedure associated with CART (Gey and Nédélec, 2001).

4.1.2 A small number of models

In this section, and in the following one as well, we restrict ourselves to a quite
common situation: we are given an orthonormal system {ϕλ}λ∈ΛN

such that |ΛN | =
N and {Λm}m∈M is some family of subsets of ΛN which includes the largest possible
one ΛN (N ∈ M). Then we define Sm as the linear span of {ϕλ}λ∈Λm

which gives
Dm = |Λm| and, in particular, DN = N .

We assume here that, for each D ≥ 1, the number of elements m ∈ M such that
Dm = D grows at most polynomially with respect to D, or, more generally, that
H(D) ≤ H̄(D) for some function H̄(j) converging to zero when j goes to infinity,
which implies that

∑

{m∈M|Dm>0} exp[−DmL] ≤ ΣL independently of N , whatever
L > 0. It is therefore possible, at the price of a large value of Σ, to choose Lm = L
for all m ∈ M with L arbitrary close to zero. It follows that any penalty of the form
pen(m) = (1 + η)ε2Dm with η > 0 satisfies (2.7) with M̄ = ∅, provided that L, 1− θ
and K − 1 are small enough, depending on η, which results, by Theorem 2, in a risk
bound of the form

E

[

‖s − s̃‖2
]

≤ C(η) inf
m∈M

{

d2(s, Sm) + ε2(Dm + 1)
}

,

where C(η) goes to infinity with η−1, but independently of N . On the other hand,
if η < 0, one could get inconsistent estimation when N goes to infinity. Such a
phenomenon is actually a consequence of the following proposition to be proved in
Section 6.4.

Proposition 2 Assume that there exists some positive number η such that

pen(N) − pen(m) ≤ (1 − η)ε2(N − Dm), (4.7)

for any m ∈ M and that the number of elements m ∈ M such that Dm = D is finite
and bounded by exp[DH(D)] with H(D) ≤ H̄(D) for some function H̄(j) converging
to zero when j goes to infinity. Then, given θ, δ ∈ (0, 1/2) there exists a number N0

depending on η, θ, H̄ and δ but neither on s nor on ε such that, for N ≥ N0,

P[Dm̂ > N(1 − θ) − 1] ≥ 1 − δ and E

[

‖s − s̃‖2
]

≥ d2(s, SN ) + C(θ, δ) ε2N,

where C depends only on θ and δ.

It is now easy to understand why choosing a penalty of the form (1− η)ε2Dm with
η > 0 leads to a bad procedure. In order to illustrate the argument, assume that
we are given some orthonormal basis {ϕj}j≥1 in H (the trigonometric system or a
wavelet basis on [0, 1], for instance) and that Sm is the linear span of {ϕ1, . . . , ϕm}
for m ∈ N, with S0 = {0}. Then Dm = m. For M we have the choice among any of
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the sets {m ≤ N} with 1 ≤ N < ∞. If we set pen(m) = 2ε2m, for all m, it follows
from Theorem 2 that, whatever s, the risk will be bounded independently of N by

E

[

‖s − ŝ‖2
]

≤ C inf
m∈M

{

d2(s, Sm) + ε2(m + 1)
}

, (4.8)

for a suitable constant C. In this case one would choose N to be as large as is
computationally feasible (in practice, the number of models is always finite!) and get
the optimal bias versus variance trade-off, apart from the constant C. The situation
becomes completely different if pen(m) = (1 − η)ε2m. In this case, Proposition 2
shows that the risk becomes larger than C ′Nε2 for N large enough. Large values
of N therefore lead to terrible results if, for instance, s = 0. Alternatively, if we
choose a moderate value of N , in order to avoid this phenomenon there is a serious
possibility that d2(s, SN ) be quite large because even the largest model is grossly
wrong, resulting in an exceedingly large risk as compared to the bound given by (4.8)
for a larger value of N .

4.1.3 A large number of models

We consider the same framework as in the previous section but now assume that the
number of models having the same dimension D grows much faster with D. More
precisely, we take for M the set of all subsets of ΛN , set Λm = m and we assume
that N = |ΛN | is large. Moreover the penalty function pen(m) only depends on m
through its cardinality |m| which is the dimension Dm of Sm.

Proposition 3 Let s be the true unknown function to estimate and set Λ1 = {λ ∈
ΛN | 〈s, ϕλ〉 6= 0}. Assume that there exist numbers δ, α,A and η with

0 ≤ δ < 1, 0 ≤ α < 1, A > 0, and 0 < η < 2(1 − α),

and some m̄ ∈ M with

|Λ1| ≤ δ|m̄|, |m̄| ≤ ANα and pen(m̄) ≤ (2 − 2α − η)(1 − δ)ε2|m̄| log N.

Then one can find two positive constants κ and N0, depending on δ, α,A and η, such
that

E

[

‖s − s̃‖2
]

≥ κε2|m̄| log N for all N ≥ N0.

The proof is given in Section 6.5. Let us now consider what are the consequences
of this result. In the present framework, a suitable choice of weights is Lm =
log(N/Dm) + 1 + 2(log Dm)/Dm since then

∑

{m∈M|Dm>0}

exp[−LmDm] =
N
∑

D=1

(

N
D

)

1

D2
exp[−D log(N/D) − D]

<
N
∑

D=1

1

D2
(eN/D)D exp[−D log(N/D) − D]

< π2/6 − 1.
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It then follows from Theorem 2 that, if the penalty takes the form

pen(m) = (1 + η)ε2Dm

(

1 + 2
√

Lm + 2Lm

)

with η > 0, (4.9)

then
E

[

‖s − s̃‖2
]

≤ C(η) inf
m∈M

{

d2(s, Sm) + ε2Dm[1 + log(N/Dm)]
}

,

whatever s. In particular, if s satisfies the assumptions of Proposition 3 with |Λ1| ≥ 3,

E

[

‖s − s̃‖2
]

≤ C(η)ε2|Λ1| log N.

On the other hand, by Proposition 3, under the same assumptions, if

pen(m̄) ≤ (2 − 2α − η)(1 − δ)ε2|m̄| log N

=
(1 − δ)(1 − α − η/2)

1 − α
ε2|m̄|[2(1 − α) log N ], (4.10)

then
E

[

‖s − s̃‖2
]

≥ κε2|m̄| log N,

when N is large enough. This implies that, for large values of N , the estimator built
on some too small value of the penalty of the form (1−η)ε2Dm log N with η > 0, will
have a risk which is much larger that one would get with a larger penalty, the ratio
tending to infinity with N . It suffices to assume that |Λ1| = o(|m̄|) when N → +∞
to see it. Comparing (4.9) with m = m̄ and |m̄| ∼ Nα together with (4.10), we see
that

pen(m) = ε2Dm[1 + 2 log(N/Dm)] (4.11)

is the borderline formula for the penalty, at least when N is very large and Dm of order
Nα with 0 < α < 1. Of course, such a phenomenon is definitely of an asymptotic
nature. Further consequences of the choice of too small penalties in connection with
threshold estimators are given in Birgé and Massart (2001, Section 6.3.4).

We are now in a position to explain to what extent classical criteria like Mallows’
Cp are or are not suitable for particular situations. In order to make our discus-
sion simple, let us focus on the problem which has motivated our study, namely the
problem of variable selection connected to the Gaussian linear regression set up (1.1).
Deciding which variables should enter a regression model is an important problem
in Econometrics, and, in order to make our discussion precise, we should distinguish
between two situations: ordered variable selection amounts to select only sets of vari-
ables of the form {Xj}1≤j≤k with k ≤ p, while complete variable selection corresponds
to select any subset of the set of p variables. Although many econometric books do
deal with this subject, most of them become indeed rather elusive (see for instance
Chapter 2 of Amemiya, 1985) as to the choice of a suitable penalty for the second
situation and some (Draper and Smith, 1981 p. 299) even suggest that one could then
use Mallows’ Cp (or Akaike’s AIC) in this case. Even the careful study of McQuarrie
and Tsai (1998) does not distinguish quite explicitely between the two situations of
ordered and unordered variable selection. They do explain (p. 64) that the multiplic-
ity of competing models of the same dimension makes a difference but do not persue
their analysis further.
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It follows from Proposition 3 that the use of Mallows’ Cp (or more generally of
underpenalized criteria) can lead to terrible results when the number of available
variables is large and that a heavier penalty should be used in such a case. Even for
small sample sizes and number of variables, simulation studies such as those proposed
by McQuarrie and Tsai (1998, p. 62) show that stronger penalties should be prefered
to Cp. This suggests that although our lower bound (4.11) for the penalty follows from
asymptotic considerations, it seems to be quite relevant for practical nonasymptotic
use.

4.1.4 A general lower bound

In order to deal with the intermediate case corresponding to H(D), as defined by
(4.2) being neither small, nor large when D is large, we have to introduce a more
complicated set up. Let us consider the following situation: we have at hand a family
of models {Sm}m∈M such that M = ∪D∈NMD. We assume that M0 has only one
element denoted by ∅ and that S∅ = {0}. For each D ≥ 1, MD is finite and nonempty
with cardinality |MD| = κ(D) and all the models Sm with m ∈ MD are orthogonal
to each other with the same dimension Dm = D. Moreover,

exp(αD) − 1 < κ(D) ≤ exp(αD) for some α > 0. (4.12)

In such a case, a suitable choice of the weights is

Lm = L(Dm) = α + βD−1
m log(Dm + 1) with β > 1, (4.13)

which implies that Σ ≤ 2
∑+∞

n=2 n−β < +∞.
If s = 0, the ideal estimator is obviously ŝ∅ = 0 since its risk is zero and it

immediately follows from Theorem 2 that the risk of a suitably tuned penalized
estimator will be bounded by 17Σε2. On the other hand, if (4.1) is violated for
large values of Dm, the corresponding estimator may behave very badly in the sense
that its risk may be arbitrarily large. More precisely, we will prove the following in
Section 6.6.

Proposition 4 Assume that the family of models at hand is as described just before,
that Lm is given by (4.13) with α > 0 and β > 1 and that s = 0. There exists some
function F on (0,+∞) such that 5/6 < F (x) < 1 for x > 0 and F (x) converges
to one when x converges either to 0 or to infinity with the following property: let λ
belong to (0, F (α)), D̄ be some large enough integer, depending on α, β and λ and
define

M̄ =
{

m ∈ M
∣

∣

∣Dm ≥ D̄ and pen(m) ≤ λε2Dm

(

1 + 2
√

Lm + 2Lm

)}

. (4.14)

• If M̄ is infinite, then, with a probability larger than 1/2, infm∈M{γ̂(m) +
pen(m)} = −∞ and m̂ is not defined.

• If M̄ is nonempty, finite and (2.7) holds, then

E

[

‖s − s̃‖2
]

≥ C(α, λ)ε2

(

sup
m∈M̄

Dm

)

, (4.15)

where C depends only on α and λ.
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This proposition says that, up to some factor F (α) ∈ (5/6, 1), the lower bound (4.1)
is tight. Since F (α) is close to one when α is either small or large, we recover, in
these situations, the lower bounds pen(m) > ε2Dm and pen(m) > 2ε2DmL(Dm)
which derive from (4.1), but under much more restrictive assumptions than those
we used in Propositions 2 and 3. For moderate values of α (around 1), there is
only a slight difference between the condition (2.7) which is required in Theorem 2
and the lower bound on the penalty function given by Proposition 4. This is due
to the fact that the proof of Theorem 2 relies on some large deviation inequalities
based on approximations of Laplace transforms, rather than the true ones. Such
approximations are justified by the fact that they lead to simple inversion formulas
while the use of the true Laplace transforms would lead to untractable inversions.
This is at the price of some lack of tightness in our deviation formulas which explains
this loss (compare, for instance, Corollary 1 and (A.1) with ρ = 0 and b = 2).

4.2 The effect of choosing too large penalties

It follows from the preceding results that the choice K > 1 in (2.6) is perfectly justi-
fied. It moreover follows from Proposition 1 that K = 2 should often be recommended.
This suggests to choose a penalty of the form (2.9) or something reasonnably close
to it. In order to analyze what would be the effect of a substantially larger penalty
we can use the next theorem which covers many typical examples. Its proof is given
in Section 6.7.

Theorem 3 Let us assume that the set M contains two specific elements 0 and 1
such that S0 = {0} and D1 = 1 and that the weights Lm satisfy (2.1) with Σ < 1. Let
s̃ be the penalized projection estimator corresponding to a penalty such that pen(0) = 0
and

pen(m) ≥ ε2[(3/2)Dm + 4LmDm + 2A] for all m ∈ M⋆ = M\ {0}. (4.16)

Then there exists some s ∈ S1 such that

E

[

‖s − s̃‖2
]

≥ A(1 − Σ)ε2, (4.17)

while
E

[

‖s − s̃‖2
]

≤ ε2
[

2
(

1 + 3
√

L1 + 4L1

)

+ 17Σ
]

, (4.18)

if the penalty is given by (2.9).

Remark: The theorem assumes the existence of a model S0 with dimension 0 in
the family. It would of course be possible to prove an analogous result without it,
provided that there exist some 1 and 2 dimensional models and choosing a suitable s
in the two-dimensional space. The proof would be quite similar.

It immediately follows from a comparison between (4.17) and (4.18) that a value of
A substantially larger that 1 ∨ L1 would lead to a large increase of the risk for some
parameters s. Two specific applications of such a result are as follows. First assume
that M = N, S0 = {0} and for m ≥ 1, Sm is the linear span of {ϕ1, . . . , ϕm} where
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{ϕj | j ≥ 1} is an orthonormal system. We can then choose Lm = 1 for m ≥ 1 which
implies that Σ = (e − 1)−1 and that E

[‖s − s̃‖2
] ≤ ε2[16 + 17/(e − 1)] if the penalty

is given by (2.9), i.e. pen(m) = 9ε2Dm. On the other hand, (4.17) immediately
shows that penalties of the form pen(m) = Cε2Dm with a large value of C should be
avoided.

Another interesting illustration is connected to the variable selection problem in
linear Gaussian regression, i.e. the problem we considered in Section 1.1. Let us choose
some orthogonal system {ϕ1, . . . , ϕN} in H and let M be the set of all subsets of
{1, . . . , N}. For m ∈ M, Sm is the linear span of {ϕj | j ∈ m} with S∅ = {0}. If Lm =
2 + log(N/Dm) for m 6= ∅, it follows from Birgé and Massart (2001, Section 5.1.2)
that Σ ≤ (e − 1)−1 and the assumptions of Theorem 3 are satisfied. If we set

pen(m) = 5ε2Dm[3 + log(N/Dm)]

and s = λϕj for some j, we derive from Theorem 2 with θ = 1/2 and K = 2 that

E

[

‖s − s̃‖2
]

< 10ε2[4 + log N ].

On the other hand, if pen(m) = Cε2Dm[3 + log(N/Dm)] with C > 4, then, for
m ∈ M⋆,

ε−2 pen(m) − (3/2)Dm − 4LmDm = Dm[3C − 9.5 + (C − 4) log(N/Dm)]

≥ (C − 4)Dm[3 + log(N/Dm)]

≥ (C − 4)[3 + log N ].

We may therefore choose 2A = (C − 4)[3 + log N ] in (4.16) and conclude from (4.17)
that E

[‖s − s̃‖2
] ≥ (C − 4)[3 + log N ]ε2/5 for some s of the required form. Once

again, this shows that large values of C should be avoided.
Unfortunately, although the preceding results give some hints concerning “good”

choices of the penalty function, they are definitely not precise enough to allow us
to provide an “optimal” choice of the penalty, even in the simplest situations that
we just considered. A practically efficient choice of the penalty can only be based
on heavy simulations, especially for those m’s that correspond to spaces Sm of small
dimension.

5 Practical implementation: introducing estimated pe-
nalties

Up to now and in the companion paper, Birgé and Massart (2001), we have essentially
considered the theoretical approach to penalization in regression since we always
assumed that the noise level ε was known and used it freely to build our penalties.
Of course, for a practical implementation of the method, we have to estimate it
somehow, since in practice, it is typically unknown. We propose here a method,
based on a mixture of theoretical and heuristic ideas that has been implemented and
tested on various data sets and proved to be fully operative.

Rather than estimating ε, we shall try to estimate the penalty itself, or calibrate it
in a close to optimal way, using the data at hand. We assume here that the family of
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models {Sm}m∈M contains some models of large dimension, which is not a practical
restriction, since one can always add some artificial models of high dimension to those
of interest. Then we choose a suitable family of weights, which means that the value of
Σ, as defined by (2.1) is not large and that the Lm’s have been more or less optimized
i.e. are not larger than necessary. In this situation, according to Theorem 2, the risk
of the penalized estimator remains under control, provided that the penalty function
satisfies (2.6) with a constant K larger than one and not too close to it. Except
for very special situations, which indeed correspond to a bad choice of the family of
models, if K is not close to one, the infimum in (2.8) will be obtained for some value
m with Dm substantially smaller than the dimension of the largest models, which
implies that Dm̂ will also share this property.

On the other hand, it follows from the various results developed in Section 4.1 that,
if K is smaller than one, Dm̂ tends to be close to the dimension of the largest models.
Such a phenomenon, which is strikingly visible in practice, suggests the following
method to calibrate the penalty. First, from a simulation study, in which ε is known,
find a suitable form for the penalty function, i.e. a suitable function F such that a
penalty given by pen(m) = ε2DmF (Lm) leads to a good value of the risk. Then define
penλ(m) = λDmF (Lm) and consider the corresponding model choices m̂λ where m̂λ

denotes the minimizer with respect to m ∈ M of penλ(m) − ‖ŝm‖2. Compute the
corresponding values of Dm̂λ

for slowly increasing values of λ starting from λ = 0.
One then typically observes that for small values of λ, those values stays very large
and they suddenly jump to a much smaller value when λ reaches some threshold λ̂.
It follows from the considerations of the preceding section that penλ̂ should be close
to the lower bound (4.1) on the penalty. In order to get a good penalty function,
it generally suffices to choose pen(m) = κλ̂DmF (Lm), where κ is a constant close
to 2. In practice, one should choose, for each family of models, the value of κ from
simulated data.

6 Proofs

6.1 Proving the existence of s̃

We recall that our observation is the process Y (t) given by (1.7) where Z is a linear
isonormal process on S and s an unknown function in H . To each m ∈ M, we asso-
ciate some orthonormal basis {ϕλ}λ∈Λm

of Sm with |Λm| = Dm. Then the restriction
to Sm of the process Z can be written by linearity as

Z(t) =
∑

λ∈Λm

〈t, ϕλ〉Z(ϕλ) = 〈t, ζm〉 with ζm =
∑

λ∈Λm

Z(ϕλ)ϕλ ∈ Sm,

from which it follows that

ζm ∼ N (0, Im) and Vm = ‖ζm‖2 ∼ χ2(Dm), (6.1)

where N (0, Im) denotes the Dm-dimensional standard Gaussian distribution and
χ2(Dm) the chi-square distribution with Dm degrees of freedom. Recalling that
sm denotes the orthogonal projection of s onto Sm, we derive that the projection
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estimator ŝm on Sm is the minimizer, with respect to t ∈ Sm of

γ(t) = ‖t‖2 − 2Y (t) = ‖s − t‖2 − ‖s‖2 − 2εZ(t) (6.2)

= ‖s − sm‖2 + ‖t − sm‖2 − ‖s‖2 − 2ε〈t, ζm〉.

Therefore ŝm is the minimizer with respect to t ∈ Sm of ‖t − sm‖2 − 2ε〈t − sm, ζm〉,
which leads to

ŝm = sm + εζm = sm + ε
∑

λ∈Λm

Z(ϕλ)ϕλ,

hence
γ(ŝm) = ‖s − sm‖2 − ‖s‖2 − ε2Vm − 2εZ(sm) (6.3)

and
‖ŝm − s‖2 = ‖s − sm‖2 + ε2Vm. (6.4)

Since
2ε|Z(sm)| = 2|〈sm, εζm〉| ≤ η−1‖sm‖2 + ηε2Vm whatever η > 0,

it follows from (6.3) that

γ(ŝm) ≥ −‖s‖2 − η−1‖sm‖2 − ε2(1 + η)Vm ≥ −
(

1 + η−1
)

‖s‖2 − ε2(1 + η)Vm

and from Lemma 1 in the Appendix with ρ = 0, b = 2 and x = LmDm + ξ that

P

[

Vm ≥ Dm

(

1 + 2
√

Lm + ξ/Dm + 2Lm + 2ξ/Dm

)]

≤ exp(−LmDm − ξ).

Under the assumption (2.1), we derive that, on some set Ωξ of probability larger than
1 − Σe−ξ, for all m’s simultaneously,

γ(ŝm) ≥ −
(

1 + η−1
)

‖s‖2 − ε2(1 + η)Dm

(

1 + 2
√

Lm + 2Lm

)

[1 + ξ/(LmDm)].

Consequently, if (2.7) holds and η is small enough, depending on K and θ, one gets

γ(ŝm) + pen(m) ≥ −
(

1 + η−1
)

‖s‖2 + ηε2Dm

(

1 + 2
√

Lm + 2Lm

)

,

for all m /∈ M̄ such that LmDm ≥ ξη−1. Since M̄ is finite, this implies that γn(ŝm)+
pen(m) tends to infinity with LmDm. By (2.1), there is only a finite number of m’s
such that LmDm ≤ n, whatever the integer n. One therefore concludes that (2.1)
and (2.7) imply that there exists a minimizer m̂ of γ(ŝm)+pen(m) on the set Ωξ and
therefore a.s. since ξ is arbitrary.

6.2 Proof of Theorem 2

Since s̃ = ŝm̂ exists a.s., it follows from the definition of m̂ that

‖s‖2 + 2εZ(s) + γ(ŝm̂) + pen(m̂) = inf
m∈M

{

‖s‖2 + 2εZ(s) + γ(ŝm) + pen(m)
}

(6.5)

and from (6.3) and (6.4) that

‖s‖2 + γ(ŝm̂) + 2εZ(s) = ‖s − s̃‖2 − 2ε2Vm̂ − 2εZ(sm̂ − s).
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Using (6.3) again to evaluate γ(ŝm) we derive from (6.5) that

‖s − s̃‖2 = 2ε2Vm̂ + 2εZ(sm̂ − s) − pen(m̂)

+ inf
m∈M

{

‖s − sm‖2 − 2εZ(sm − s) − ε2Vm + pen(m)
}

.

Setting dm = ‖s− sm‖, Um = d−1
m Z(sm − s) and noticing that ‖s− s̃‖2 = ε2Vm̂ + d2

m̂

by (6.4), we finally get

(1 − θ)‖s − s̃‖2 = (2 − θ)ε2Vm̂ − θd2
m̂ + 2εdm̂Um̂ − pen(m̂)

+ inf
m∈M

{

d2
m − 2εdmUm − ε2Vm + pen(m)

}

,

or equivalently,

‖s − s̃‖2 = (1 − θ)−1
(

∆m̂ + inf
m∈M

Rm

)

, (6.6)

where
∆m = (2 − θ)ε2Vm + 2εdmUm − θd2

m − pen(m) (6.7)

and
Rm = d2

m + pen(m) − ε2Vm − 2εdmUm. (6.8)

Since m̂ can, in principle, take any value in M, we need, in order to control ‖s− s̃‖2,
to control ∆m uniformly with respect to m. To do this, we fix some positive number
ξ and set Am = Vm + 2dmUm[ε(2 − θ)]−1, xm = LmDm + ξ,

Ωξ,m =

{

Am < Dm +
θd2

m

ε2(2 − θ)
+ 2

√

Dmxm +
2xm

θ(2 − θ)

}

and Ωξ =
⋂

m∈M

Ωξ,m.

Since 〈ϕλ, s − sm〉 = 0 for any λ ∈ Λm, ζm and Z(s − sm) are independent and
the random variables Vm and Um are also independent with respective distributions
χ2(Dm) and N (0, 1). It then follows from Lemma 1 in the Appendix with ρ =

2dm[ε(2 − θ)]−1 and b = 2[θ(2 − θ)]−1 > 2 that P

[

Ωc
ξ,m

]

≤ exp(−xm) and therefore

P

[

Ωc
ξ

]

≤
∑

m∈M

exp(−LmDm − ξ) = Σ exp(−ξ). (6.9)

Using the inequalities
√

a + b ≤ √
a +

√
b and 2ab ≤ δa2 + δ−1b2, we derive that

2
√

Dm(LmDm + ξ) ≤ 2Dm

√

Lm + αDm + α−1ξ, for α > 0.

It therefore follows from the definition of Ωξ that, whatever m ∈ M, on the set Ωξ,

Am ≤ (1 + α)Dm +
θd2

m

ε2(2 − θ)
+ 2Dm

√

Lm +

(

α−1 +
2

θ(2 − θ)

)

ξ +
2LmDm

θ(2 − θ)
.

If we define α by K = (1 + α)(2 − θ), then α > 0 since K > 2 − θ and

(2 − θ)ε2Am ≤ Qm + θd2
m + ε2ξ

[

(2 − θ)α−1 + 2θ−1
]

.
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It then follows from (6.7) and our definition of the penalty function that

∆m1lΩξ
=

[

(2 − θ)ε2Am − θd2
m − pen(m)

]

1lΩξ

≤
(

Qm − pen(m) + ε2ξ
[

(2 − θ)α−1 + 2θ−1
])

1lΩξ
.

Since this inequality holds whatever m ∈ M one can conclude from (2.7) that

∆m̂1lΩξ
≤
(

ε2ξ
[

(2 − θ)α−1 + 2θ−1
]

+ sup
m∈M̄

{Qm − pen(m)}
)

1lΩξ
(6.10)

and therefore, by (6.9), for all ξ > 0,

P

[

∆m̂ > ε2
(

(2 − θ)α−1 + 2θ−1
)

ξ + sup
m∈M̄

{Qm − pen(m)}
]

≤ Σ exp(−ξ).

Integrating with respect to ξ, we get

E[∆m̂] ≤ Σε2
[

(2 − θ)α−1 + 2θ−1
]

+ sup
m∈M̄

{Qm − pen(m)}. (6.11)

Since it follows from (6.8) that

E

[

inf
m∈M

Rm

]

≤ inf
m∈M

E[Rm] = inf
m∈M

(

d2
m + pen(m) − ε2Dm

)

,

we conclude from (6.6) and (6.11) that (2.8) holds.

6.3 Proof of Proposition 1

Proposition 1 is actually the consequence of a more general result which is as follows.

Theorem 4 Under the settings of Theorem 2 with Qm given by (2.6), assume that
the weights Lm are bounded by some finite number L and that one can find nonnegative
numbers K ′ ≥ K,a′ and b′ such that

Qm ≤ pen(m) ≤ ε2Dm

(

K ′ + a′
√

Lm + b′Lm

)

, for all m ∈ M. (6.12)

i) If L < 1/4 and λ, β > 0 satisfy

(2 + λ)(1 − β) − K ′ −
√

L(4 + 2λ + a′) − L
(

2λ−1 + b′
)

= 0, (6.13)

then

(1 − θ) E

[

‖s − s̃‖2
]

≤ (1 + λ) E

[

inf
m∈M

‖s − ŝm‖2
]

+ Σε2

[

(2 − θ)2

K + θ − 2
+

2

θ
+

2 + λ

β
+

2

λ

]

. (6.14)

ii) If the family of weights satisfies (2.12), K ′ = 2 and d(s, Sm) > 0 for all m ∈ M,
then

lim sup
ε→0

E
[‖s − s̃‖2

]

E [infm∈M ‖s − ŝm‖2]
≤ (1 − θ)−1. (6.15)
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Remark: It is easily seen that the condition L < 1/4 is necessary and sufficient for
the existence of pairs λ, β satisfying (6.13).

Proof: To prove these results, we shall derive a sharper bound for E [infm∈M Rm]. To
do this, we select some λ > 0 and define ρ′ = 2dm[ε(2 + λ)]−1, A′

m = Vm + ρ′Um,

Ω′
ξ,m =

{

A′
m > Dm − 2

√

(Dm + ρ′2/2) (LmDm + ξ)

}

and Ω′
ξ =

⋂

m∈M

Ω′
ξ,m.

(6.16)

It follows from (A.2) below that P

[

Ω′c
ξ,m

]

≤ exp(−LmDm − ξ) and therefore that

P

[

Ω′c
ξ

]

≤
∑

m∈M

exp(−LmDm − ξ) = Σ exp(−ξ). (6.17)

Since for β > 0,

2
√

(Dm + ρ′2/2) (LmDm + ξ) ≤ 2
√

(ρ′2/2) (LmDm + ξ) + 2Dm

√

Lm + 2
√

Dmξ

≤ ρ′2λ(2 + λ)

4
+

2(LmDm + ξ)

λ(2 + λ)

+ 2Dm

√

Lm + βDm + β−1ξ,

we derive that, on the set Ω′
ξ and for all m ∈ M,

A′
m ≥ (1 − β)Dm − λd2

m

ε2(2 + λ)
− 2Dm

√

Lm −
(

1

β
+

2

λ(2 + λ)

)

ξ − 2LmDm

λ(2 + λ)
.

It then follows from (6.12) that

(2 + λ)ε2Vm + 2εdmUm = (2 + λ)ε2A′
m

≥ ε2Dm

[

(2 + λ)(1 − β) − 2(2 + λ)
√

Lm − 2λ−1Lm

]

− λd2
m −

(

2 + λ

β
+

2

λ

)

ε2ξ

≥ pen(m) − λd2
m −

(

2 + λ

β
+

2

λ

)

ε2ξ − ε2DmGm,

with

Gm = K ′ + [2(2 + λ) + a′]
√

Lm +
(

2λ−1 + b′
)

Lm − (2 + λ)(1 − β).

Together with (6.8) and (6.4), the last inequality implies that

Rm ≤ (1 + λ)
(

‖s − ŝm‖2
)

+ ε2DmGm +

(

2 + λ

β
+

2

λ

)

ε2ξ.

Since this holds on the set Ω′
ξ for all m ∈ M, we deduce from (6.17) that,

P

[

inf
m∈M

Rm > inf
m∈M

{

(1 + λ)‖s − ŝm‖2 + ε2DmGm

}

+ ε2
(

(2 + λ)β−1 + 2λ−1
)

ξ

]

≤ Σ exp(−ξ).
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Integrating with respect to ξ, we conclude that

E

[

inf
m∈M

Rm

]

≤ E

[

inf
m∈M

{

(1 + λ)‖s − ŝm‖2 + ε2DmGm

}

]

+ Σε2
(

(2 + λ)β−1 + 2λ−1
)

. (6.18)

If λ and β are chosen in order to satisfy (6.13), then Gm ≤ 0 for all m ∈ M and
(6.14) follows from (6.6), (6.11) and the fact that M̄ is empty.

Let us now prove (6.15). Obviously, setting M1 = {m ∈ M|Gm > 0} and
M2 = M\M1, we get

inf
m∈M

{

(1 + λ)‖s − ŝm‖2 + ε2DmGm

}

≤ inf
m∈M1

{

(1 + λ)‖s − ŝm‖2 + ε2DmGm

}

∧

(1 + λ) inf
m∈M2

‖s − ŝm‖2

≤
[

(1 + λ) inf
m∈M1

‖s − ŝm‖2 + ε2 sup
m∈M1

DmGm

]

∧

(1 + λ) inf
m∈M2

‖s − ŝm‖2. (6.19)

If K ′ = 2, λ < 1 and β = λ/3, then Gm ≤ 0 provided that Lm is small enough, which,
by assumption, is true as soon as Dm ≥ D, where D depends on λ, a′ and b′. In view
of (2.1) and the boundedness of the weights Lm, this implies that the set M1 is finite.
Then supm∈M1

DmGm < +∞ while, by our assumption on s, infm∈M1
dm > 0. It

then follows from (6.4) that, for ε small enough,

λ inf
m∈M1

‖s − ŝm‖2 ≥ λ inf
m∈M1

d2
m ≥ ε2 sup

m∈M1

DmGm

and finally, by (6.19),

inf
m∈M

{

(1 + λ)‖s − ŝm‖2 + ε2DmGm

}

≤ (1 + 2λ) inf
m∈M

‖s − ŝm‖2.

Putting this inequality together with (6.18), (6.6) and (6.11), we conclude that, for ε
small enough, depending on λ,

(1 − θ) E

[

‖s − s̃‖2
]

≤ (1 + 2λ) E

[

inf
m∈M

‖s − ŝm‖2
]

+ Σε2

[

(2 − θ)2

K + θ − 2
+

2

θ
+

3(2 + λ)

λ
+

2

λ

]

.

Letting ε, then λ go to zero gives (6.15).

Let us now turn to the proof of Proposition 1. Since, by definition, ‖s − s̃‖ ≥
infm∈M ‖s − ŝm‖, it suffices to show that (6.15) holds for θ arbitrarily close to zero
and therefore to check that the assumptions required to apply Theorem 4 are satisfied
whatever θ > 0. Let us set

Qm = ε2Dm

(

2 − θ/2 + 2(2 − θ)
√

L′
m + 2θ−1L′

m

)

with L′
m = ηLm.
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Since supm∈M Lm < +∞, pen(m) ≥ Qm for all m ∈ M by (2.13) if η > 0 is small
enough. Moreover, the weights L′

m satisfy (2.1) by assumption. Using the upper
bound in (2.13), we also see that (6.12) holds with K ′ = 2, a′ = η−1/2a, b′ = η−1b
and Lm replaced by L′

m. Since the new weights L′
m also satisfy (2.12), (6.15) holds

whatever θ > 0.

6.4 Proof of Proposition 2

Let m be given in M. It follows from (4.7) that

∆(m,N) = ‖ŝN‖2 − ‖ŝm‖2 + pen(m) − pen(N)

≥ ‖ŝN − ŝm‖2 − ε2(1 − η)(N − Dm),

with
ŝN − ŝm = sN − sm + ε(ζN − ζm),

where ζN −ζm is a standard normal vector with dimension N −Dm. This implies that
U = ‖ε−1(ŝN − ŝm)‖2 has the distribution of a non-central chi-square with N − Dm

degrees of freedom and noncentrality parameter µ = ε−1‖sN − sm‖. Then

∆(m,N) ≥ ε2 [U − (1 − η)Em] with Em = N − Dm,

and by (A.2) (with ρ = 0 and D = Em) and the fact that U is stochastically larger
than a chi-square variable with Em degrees of freedom,

P

[

U ≤ Em − 2
√

xEm

]

≤ e−x for x > 0.

Setting x = η2Em/4, we conclude that ∆(m,N) > 0 with probability at least 1 −
exp

[−η2Em/4
]

. Defining the integer D by N(1 − θ)− 1 < D ≤ N(1 − θ), we get

P

[

inf
m∈Mn |Dm≤D

∆(m,N) ≤ 0

]

≤
D
∑

j=0

exp

[

jH(j) − η2

4
(N − j)

]

≤ exp

[

−θη2N

4

]

D
∑

j=0

exp[jH(j)].

By assumption, there exists some integer k depending on H̄, θ and η such that H(j) ≤
H̄(j) ≤ η2θ/[8(1 − θ)] as soon as j ≥ k. Assuming that D ≥ k, we then derive that

D
∑

j=0

exp[jH(j)] ≤
k−1
∑

j=0

exp[jH̄(j)] +
D
∑

j=k

exp

[

θη2j

8(1 − θ)

]

≤ C1 + C2 exp

[

θη2N

8

]

,

with constants C1 and C2 depending only on H̄, θ and η. Therefore for N large
enough (depending on H̄, θ, η and δ), ∆(m,N) > 0 for all m such that Dm ≤ D
with probability at least 1 − δ. In view of the definition of ∆, we conclude that
P[Dm̂ > D] ≥ 1 − δ.

Let us now prove the second part of the proposition. We first recall from (6.4) that

‖s − s̃‖2 = ε2Vm̂ + ‖s − sm̂‖2 ≥ ε2Vm̂ + ‖s − sN‖2 (6.20)
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and set
M =

∑

λ∈ΛN

1l[0,τ)

(

[Z(ϕλ)]2
)

with P

[

χ2(1) < τ
]

= θ/2.

Noticing that the variables [Z(ϕλ)]2 for λ ∈ ΛN are i.i.d. with distribution χ2(1),
we derive that M is binomial with parameters N and θ/2 and get, using a classical
binomial inequality (see Hoeffding, 1963)

P [M ≥ Nθ] = P [M − Nθ/2 ≥ Nθ/2] ≤ exp
[

−Nθ2/8
]

.

Once again, this is bounded by δ for N large enough and therefore, except on a set of
probability bounded by 2δ we get simultaneously Dm̂ > N(1 − θ) − 1 and M < Nθ,
which implies that

Vm̂ =
∑

λ∈Λm̂

[Z(ϕλ)]2 ≥ [N(1 − 2θ) − 1]τ.

The conclusion follows from (6.20) since Φ (
√

τ) = (θ + 2)/4 and therefore

E[Vm̂] ≥ (1 − 2δ)[N(1 − 2θ) − 1]

[

Φ−1
(

θ + 2

4

)]2

.

6.5 Proof of Proposition 3

Setting Λ2 = Λ \ Λ1, we recall that the variables Wλ = [Y (ϕλ)]2 for λ ∈ Λ2 are
i.i.d. with distribution χ2(1). We denote by W(1) < . . . < W(n) with n = N − |Λ1|
the corresponding order statistics and, as usual, by m̂ the minimizer with respect to
m ∈ M of

γ(ŝm) + pen(m) = −‖ŝm∩Λ1
‖2 − ‖ŝm∩Λ2

‖2 + pen(m)

= −‖ŝm∩Λ1
‖2 − ε2

∑

λ∈m∩Λ2

Wλ + pen(m).

Since pen(m) only depends on |m|, we deduce that

γ(ŝm̂) = −‖ŝm̂∩Λ1
‖2 − ε2

k
∑

j=1

W(n+1−j) with k = |m̂ ∩ Λ2| (6.21)

and that

‖s − ŝm̂‖2 = ‖s − ŝm̂∩Λ1
‖2 + ε2

k
∑

j=1

W(n+1−j). (6.22)

Now, let us consider the subset m′ of Λ defined by

m′ = (m̂∩Λ1)∪ {λ ∈ Λ2 |Wλ = W(n+1−j) for some j, 1 ≤ j ≤ J = |m̄| − |m̂∩Λ1|}.

Since |m′| = |m̄|, pen(m′) = pen(m̄) and

γ(ŝm̂) ≤ γ(ŝm′) + pen(m′)

≤ −‖ŝm̂∩Λ1
‖2 − ε2

J
∑

j=1

W(n+1−j) + (2 − 2α − η)(1 − δ)ε2|m̄| log N,
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then from (6.21)

k
∑

j=1

W(n+1−j) ≥
J
∑

j=1

W(n+1−j) − (2 − 2α − η)(1 − δ)|m̄| log N. (6.23)

Since
n ≥ N

(

1 − δANα−1
)

and (1 − δ)|m̄| ≤ J ≤ |m̄| ≤ ANα, (6.24)

we derive that n/J goes to infinity with N . It then follows from Lemma 3 with θ = 3
that there exists a set Ω′ with

P[Ω′] ≥ 1 −
[

exp

(

9

8

)

− 1

]−1

> 1/2, (6.25)

such that on Ω′ and uniformly for 1 ≤ j ≤ J ,

W(n+1−j) ≥ −2 log(2j/n)[1 + o(1)] ≥ [2 log(n/J)][1 + o(1)],

since n/j ≥ n/J goes to infinity with N . Therefore by (6.23) and (6.24), when
N → +∞,

k
∑

j=1

W(n+1−j) ≥ 2J [log N − log J ] [1 + o(1)] − (2 − 2α − η)J log N

≥ ηJ log N [1 + o(1)].

It then follows from (6.22) and (6.25) that

E

[

‖s − s̃‖2
]

≥ ε2
E



1lΩ′

k
∑

j=1

W(n+1−j)



 ≥ (η/2)Jε2 log N [1 + o(1)]

≥ (η/2)(1 − δ)|m̄|ε2 log N [1 + o(1)],

which concludes the proof.

6.6 Proof of Proposition 4

For D ≥ 1, the variables Vm, defined by (6.1), for m ∈ MD, are i.i.d. with a chi-square
distribution with D degrees of freedom, in view of the orthogonality of the spaces Sm.
Therefore, if we denote by χ2(D) a random variable with such a distribution, for any
z > 0,

log

(

P

[

sup
m∈MD

Vm < z

])

= κ(D) log
(

1 − P

[

χ2(D) ≥ z
])

. (6.26)

An application of (A.1) with x = αD + 2 log(D + 3), ρ = 0 and b = 2 gives,

P



χ2(D) ≥ (1 + 2α)D + 2D
√

α

√

1 +
2 log(D + 3)

αD
+ 4 log(D + 3)



 ≤ exp(−αD)

(D + 3)2
.
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Setting

G(α) = 1 + 2
√

α + 2α, z = G(α)D + 2
(

2 + α−1/2
)

log(D + 3)

and using
√

1 + u ≤ 1 + u/2, we derive that

P

[

χ2(D) ≥ z
]

≤ exp(−αD)

(D + 3)2
≤ 1

16
.

For u ≤ 1/16, u−1 log(1−u) ≥ 16 log(1−1/16) > −1.033. It then follows from (6.26)
and (4.12), that

log

(

P

[

sup
m∈MD

Vm < z

])

≥ exp(αD) log

(

1 − exp(−αD)

(D + 3)2

)

≥ − 1.033

(D + 3)2

and therefore,

P

[

sup
m∈MD

Vm ≥ z

]

≤ 1 − exp

(

− 1.033

(D + 3)2

)

≤ 1.033

(D + 3)2
.

Finally,

P

[

sup
m∈M\∅

{

Vm − G(α)Dm − 2
(

2 + α−1/2
)

log(Dm + 3)
}

≥ 0

]

≤ 1.033
∑

D≥1

(D + 3)−2 < 0.3. (6.27)

We now want to prove an inequality in the opposite direction. In order to do this,
we set

θ(x) = 1 + x−1/2 − log[G(x)]

2x
, g(x) =

{

5/6 if 0 < x < 3,
[θ(5x/12)]−1 if x ≥ 3,

a = αg(α)/2 and define D(α) to be the smallest integer n ≥ 3 such that

αn

4
≥ log n ≥ 1

2
log(4π) + log

(

2a +
√

2a
)

+
1

n

[

1

6
+

1

2 (a +
√

a)
2 +

1

a +
√

a

]

, (6.28)

∑

j≥n

exp
(

−
√

j
(

1 − e−αj
))

≤ 0.2 and G(α) ≥ 8
(

1 + (2/3)α−1/2
) log n

n
. (6.29)

If D ≥ D(α), then by (6.28) y = g(α)(αD − 2 log D) ≥ aD,
√

D
(

a +
√

a
) ≤

(

y/
√

D
)

+
√

y ≤
√

D
(

2a +
√

2a
)

and Corollary 1 below together with (6.28) imply that if z = D + 2
√

Dy + 2y,

log
(

P

[

χ2(D) ≥ z
])

≥ −yθ

(

y

D

)

− 1

2
log(4πD) − log

(

2a +
√

2a
)

− 1

D

[

1

6
+

1

2 (a +
√

a)
2 +

1

a +
√

a

]

≥ −yθ

(

y

D

)

− 3

2
log D.

31



It follows from Proposition 5 below that the function x 7→ θ(x) is bounded by 6/5
and decreasing for x ≥ 5/4. Consequently θ(y/D) ≤ 1/g(α) for α < 3 and if α ≥ 3,
then y/D ≥ a > 5α/12 ≥ 5/4 hence θ(y/D) ≤ θ(5α/12) = 1/g(α). Therefore
yθ(y/D) ≤ αD− 2 log D, log

(

P
[

χ2(D) ≥ z
]) ≥ −αD + (log D)/2 and it follows from

(6.26) and (4.12) that

log

(

P

[

sup
m∈MD

Vm < z

])

≤ −κ(D)P
[

χ2(D) ≥ z
]

≤ −
√

D
(

1 − e−αD
)

. (6.30)

Since
√

1 − u > 1 − 0.6u for u ≤ 1/2, we derive from (6.28) that

√
y =

√

αg(α)D
√

1 − 2 log D/(αD) >
√

αg(α)D − 1.2(log D)
√

g(α)/(αD),

which implies that

z > DG[αg(α)] −
(

2.4
√

g(α)/α + 4g(α)

)

log D.

Setting F (α) = G[αg(α)]/G(α), we easily derive from the properties of θ that F (α)
converges to one when α converges to zero or to infinity and that 1 > F (α) > g(α) ≥
5/6 for all α > 0. It follows that

z > G(α)F (α)D − 4F (α) log D
(

1 + (2/3)α−1/2
)

and we conclude from (6.30) and (6.29) that

P

[

sup
{m∈M|Dm≥D(α)}

{

Vm − G(α)F (α)Dm − 4F (α) log Dm

(

1 + (2/3)α−1/2
)}

< 0

]

≤
∑

j≥D(α)

exp
[

−
√

j
(

1 − e−αj
)]

≤ 0.2.

Together with (6.27), this means that P[Ω] ≥ 1/2, if we denote by Ω the event defined
by the set of inequalities

Vm < G(α)Dm + 2
(

2 + α−1/2
)

log(Dm + 3), for all m ∈ M, (6.31)

since V∅ = 0 and

Vm ≥ G(α)F (α)Dm − 4F (α)
(

1 + (2/3)α−1/2
)

log Dm if Dm ≥ D(α). (6.32)

Let us now analyze what happens on the event Ω, provided that D̄ satisfies

D̄[F (α) − λ] ≥ 4D(α) (6.33)

and

D̄G(α)[F (α)−λ] ≥ 2 log(D̄+1)
[

4F (α)
(

1 + (2/3)α−1/2
)

+ λβ
(

α−1/2 + 2
)]

. (6.34)
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For any m ∈ M̄, it follows from (6.33) that Dm ≥ D̄ > 4D(α). Moreover, by (4.14)
and (4.13),

pen(m) ≤ λε2
[

DmG(α) + β
(

α−1/2 + 2
)

log(Dm + 1)
]

and, since s = sm = 0, γ(ŝm) = −ε2Vm by (6.3). Therefore, by (6.32) and (6.34),

γ(ŝm) + pen(m) ≤ −ε2DmG(α)[F (α) − λ]

+ ε2 log(Dm + 1)
[

4F (α)
(

1 + (2/3)α−1/2
)

+ λβ
(

α−1/2 + 2
)]

≤ −(ε2/2)DmG(α)[F (α) − λ]. (6.35)

— If M̄ is infinite, then Dm can be taken arbitrarily large and

P

[

inf
m∈M

{γ(ŝm + pen(m)} = −∞
]

≥ P[Ω] ≥ 1/2.

— If M̄ is finite, Theorem 2 applies, implying that s̃ exists. On the other hand, if
D′ = ⌊(F (α) − λ)Dm/4⌋, where ⌊x⌋ denotes the integer part of x and m ∈ M̄, then
D′ ≥ D(α) ≥ 3 by (6.33) and it follows from (6.31) and (6.29) that,

inf
D≤D′

inf
m∈MD

(γ(ŝm) + pen(m)) ≥ −ε2 sup
D≤D′

sup
m∈MD

Vm

> −ε2
[

G(α)D′ + 2
(

2 + α−1/2
)

log(D′ + 3)
]

> −2ε2G(α)D′

> −ε2G(α)[F (α) − λ]Dm/2. (6.36)

Comparing (6.35) with (6.36) and taking into account (6.33), one concludes, since m
is arbitrary in M̄, that, on the set Ω,

Dm̂ >
1

4
[F (α) − λ]

(

sup
m∈M̄

Dm

)

≥ D(α).

Since, by (6.4), ‖s − s̃‖2 = ε2Vm̂, it follows from (6.32) and (6.29) that

ε−2‖s − s̃‖2 ≥ Dm̂G(α)F (α) − 4F (α)
(

1 + (2/3)α−1/2
)

log Dm̂ ≥ Dm̂G(α)F (α)/2

and (4.15) follows since P[Ω] ≥ 1/2.

6.7 Proof of Theorem 3

Let S1 be any one-dimensional model in the family and s an element of S1 such that
‖s‖ = ε

√
A. If m̂ = 0, then s̃ = 0, hence

E

[

‖s − s̃‖2
]

≥ Aε2
P[m̂ = 0].

Since ŝ0 = 0 and pen(0) = 0, it follows from (2.2) that m̂ = 0 if pen(m) > ‖ŝm‖2

for all m 6= 0. Setting Um = ε−2‖ŝm‖2, we know that Um has the distribution of a
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non-central chi-square with parameters Dm and ‖sm‖/ε and by Lemma 1 of Birgé
(2001), since ‖sm‖ is either ε

√
A or 0,

P

[

Um ≥ Dm + A + 2
√

(Dm + 2A)xm + 2xm

]

≤ exp(−xm) for all m ∈ M.

Setting xm = LmDm, we derive that if

Ω =

{

Um < Dm + A + 2
√

(Dm + 2A)LmDm + 2LmDm for all m ∈ M⋆
}

,

then
P[Ω] ≥ 1 −

∑

m∈M⋆

exp(−LmDm) = 1 − Σ.

Putting everything together we can conclude that if

ε−2 pen(m) ≥ Dm + A + 2
√

(Dm + 2A)LmDm + 2LmDm for all m ∈ M⋆, (6.37)

then
E

[

‖s − s̃‖2
]

≥ Aε2
P[Ω] ≥ Aε2(1 − Σ).

Since (6.37) is an immediate consequence of (4.16), (4.17) holds while the upper
bound for the risk of s̃ when pen(m) is given by (2.9) follows from (2.10).

APPENDIX

Lemma 1 Let V and U be independent random variables with respective distributions
χ2(D) and N (0, 1) and ρ be some real number. Then, for any positive x, the following
probability bounds hold

P

[

V + ρU ≥ D + ρ2/(2b) + 2
√

Dx + bx
]

≤ exp(−x) for any b ≥ 2 (A.1)

and

P

[

V + ρU ≤ D − 2
√

(D + ρ2/2)x

]

≤ exp(−x). (A.2)

Proof of Lemma 1: Let us first observe that the Laplace transform of a centered χ2(1)
variable U2 − 1 satisfies

log E

[

ey(U2−1)
]

= −1

2
log(1 − 2y) − y ≤ y2

1 − 2y
for y <

1

2
,

which implies by independence that

log E

[

ey(V −D+ρU)
]

≤ Dy2

1 − 2y
+

y2ρ2

2
, (A.3)

since E[tU ] = exp(t2/2). If b ≥ 2 the right-hand side of (A.3) can be bounded by
Dy2/(1 − by) + yρ2/(2b) for 0 < y < b−1 which implies that

log E

[

ey[V −D+ρU−ρ2/(2b)]
]

≤ Dy2

1 − by
for 0 < y < b−1.
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Inequality (A.1) then follows from Lemma 2 below with a2 = D. Its proof is part of
the proof of Lemma 8 of Birgé and Massart (1998).

On the other hand, setting a2 = D + ρ2/2 and A2 = 4a2x, we get

P[V + ρU ≤ D − A] = P[−V − ρU + D − A ≥ 0]

≤ inf
t≥0

E[exp(t(−V − ρU + D − A))]

= inf
y≤0

eAy
E[exp(y(V + ρU − D))]

≤ inf
y≤0

exp
(

Ay + a2y2
)

= exp
(

−A2a−2/4
)

,

and (A.2) follows.

Lemma 2 Let X be a random variable such that

log (E[exp(yX)]) ≤ (ay)2

1 − by
for 0 < y < b−1,

where a and b are positive constants. Then

P[X ≥ 2a
√

x + bx] ≤ exp(−x) for all x > 0.

Lemma 3 Let W(1) < . . . < W(n) be an ordered sample of size n from the chi-square
distribution with one degree of freedom, j be a positive integer, θ a positive number
such that j(1 + θ) ≤ n and Φ the standard normal c.d.f. Then

P

[

W(n+1−j) ≤
[

Φ−1
(

1 − j(1 + θ)

2n

)]2
]

≤ exp

[

− jθ2

2(1 + θ)

]

, (A.4)

and consequently if θ ≥ 2.06

W(n+1−j) >

[

Φ−1
(

1 − j(1 + θ)

2n

)]2

for 1 ≤ j ≤ n

(1 + θ)
, (A.5)

apart from a set of probability bounded by

[

exp

(

θ2

2(1 + θ)

)

− 1

]−1

< 1.

Moreover, uniformly for 0 < y ≤ x,

[

Φ−1 (1 − y)
]2

= −(2 log y)[1 + o(1)] when x → 0.

Proof: Let us first observe that if F (t) is the cumulative distribution function of the

absolute value of a normal variable and U is uniform on [0, 1], then W =
[

F−1(U)
]2

has the chi-square distribution with one degree of freedom. It follows that W(j) can

be written as
[

F−1(U(j))
]2

where U(1) < . . . < U(n) is an ordered sample of size n of

the uniform distribution. Now set x = j(1 + θ)/n. Since (A.4) clearly holds when
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x = 1, we may assume that x < 1. Denoting by B(n, p) a binomial random variable
with parameters n and p we notice that

P[U(n+1−j) ≤ 1 − x] = P[U(n+1−j) < 1 − x] = P[B(n, x) < j] = P[B(n, x) < nx − jθ].
(A.6)

Recalling from Massart (1990, Theorem 2) that, for 0 < y ≤ p,

P[B(n, p) − np < −ny] ≤ exp

[

− ny2

2(p − y/3)(1 − p + y/3)

]

< exp

[

−ny2

2p

]

, (A.7)

we derive from (A.6) that

P

[

W(n+1−j) ≤ [F−1(1 − x)]2
]

= P

[

U(n+1−j) ≤ 1 − x
]

≤ exp

[

− jθ2

2(1 + θ)

]

(A.8)

and (A.4) follows since F (t) = 2Φ(t) − 1. Summing the different probabilities gives
(A.5). The last result follows from Feller (1968, Lemma 2 p. 175).

Proposition 4, which is our most general result concerning lower bounds for the
penalty, is based on some corollary of the following proposition which is of inter-
est by itself since it evaluates rather precisely the probabilities of large deviations of
gamma random variables from their mean. A similar result appeared as Lemma 6.1
in Johnstone (2001) and our proof follows the same lines as his. In particular, the
upper bound part in the next lemma is implicit in its proof. Unfortunately, we can-
not use his result since we do need a lower bound for the deviations of chi-square
variables, while he only established upper bounds. Moreover, his result is only valid
for x +

√
x ≤ 1/4 which is not enough for our purpose.

Proposition 5 Let X be a random variable with gamma distribution Γ(t, 1). If x > 0
then

log
(

P
[

X ≥ t
(

1 + 2x + 2
√

x
)])

= −2txθ(x) − (1/2) log(2π/λ) − Φ, (A.9)

with
θ(x) = 1 + x−1/2 − (2x)−1 log

(

1 + 2x + 2
√

x
)

; (A.10)

λ = t
[

2t
(

x +
√

x
)

+ 1
]−2

and 0 < Φ < 1/(12t) + log(1 + λ).

Moreover θ(x) is decreasing for x ≥ 5/4,

1 < θ(x) < 1.196 and lim
x→0

θ(x) = lim
x→+∞

θ(x) = 1. (A.11)

Remark: Bound (A.9) is only useful for λ < 2π. Otherwise, since 2txθ(x) < 1.2/(2λ),
(A.9) becomes non significant since Φ is not precisely known.

The proof of this proposition is mainly based on the following elementary lemma which
controls the tails of gamma integrals (see Johnstone, 2001, proof of Lemma 6.1).

Lemma 4 The following inequality holds for all z > t > 0:

zt+1e−z

z − t
> I(z) =

∫ +∞

z
xte−x dx >

(

1 +
t

(z − t)2

)−1 zt+1e−z

z − t
.
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Proof: One merely notices that the derivative of the function −xt+1e−x/(x − t) is
xte−x

(

1 + t(x − t)−2
)

, which implies, for z > t, that

I(z) <

∫ +∞

z
xte−x

(

1 +
t

(x − t)2

)

dx =
zt+1e−z

z − t
<

(

1 +
t

(z − t)2

)

I(z).

Proof of Proposition 5: Given u > 0, it follows from the preceding lemma that

P[X ≥ t + u] =
1

Γ(t)

∫ +∞

t+u
xt−1e−x dx =

(t + u)te−(t+u)

(u + 1)Γ(t)
∆′,

with 1 > ∆′ >
[

1 + t(u + 1)−2
]−1

. Since by Stirling’s Formula (see Whittaker and
Watson, 1927 p. 258),

Γ(t) = tt−1/2e−t
√

2π exp[θt/(12t)] with 0 < θt < 1,

it follows that
P[X ≥ t + u] = ∆

(

1 + ut−1
)t

e−u
√

δ/(2π), (A.12)

with

δ = t(u + 1)−2 and
[

(1 + δ)e1/(12t)
]−1

< ∆ < 1.

Applying this result with u = 2t (x +
√

x), we derive that

log
(

P
[

X ≥ t
(

1 + 2x + 2
√

x
)])

= t
[

log
(

1 + 2x + 2
√

x
)− 2

(

x +
√

x
)]

− (1/2) log[2π/λ] − Φ,

with 0 < Φ < (12t)−1 +log(1+λ), which proves (A.9). As to (A.11), it can be derived
from some elementary analytical considerations and numerical computations.

Corollary 1 Let Y be a chi-square random variable with D degrees of freedom and
y > 0. Then

log
(

P

[

Y ≥ D + 2
√

Dy + 2y
])

= −yθ

(

y

D

)

− log

(

y√
D

+
√

y

)

− 1

2
log(4π) − Ψ,

where the function θ defined by (A.10) satisfies (A.11) and

0 < Ψ <
1

6D
+

1

2

[

y√
D

+
√

y

]−2

+
(

y +
√

Dy
)−1

.

Proof: Since Y has a distribution Γ(D/2, 1/2), X = Y/2 has a distribution Γ(D/2, 1).
Applying Proposition 5 with t = D/2 and x = y/D, we get

log
(

P

[

Y ≥ D + 2
√

Dy + 2y
])

= log
(

P
[

X ≥ (D/2)
(

1 + 2x + 2
√

x
)])

= −Dxθ(x) − (1/2) log(2π/λ) − Φ

= −yθ(y/D) + (1/2) log(2λ) − (1/2) log(4π) − Φ,
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with 0 < Φ < 1/(6D) + λ and λ = (D/2)
[

y +
√

Dy + 1
]−2

. Moreover

2λ =

(

1

1 + (y +
√

Dy)−1

)2 [

y/
√

D +
√

y
]−2

<
[

y/
√

D +
√

y
]−2

,

and therefore

−
(

y +
√

Dy
)−1

− log
(

y/
√

D +
√

y
)

< (1/2) log(2λ) < − log
(

y/
√

D +
√

y
)

,

hence our result.
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